Driver Distraction – are we being distracted away from real solutions?

October 29, 2012
Person using cell phone while driving.

Person using cell phone while driving. (Photo credit: Wikipedia)

 

Driver distraction is a major cause of accidents on our roads.  More research into driver distraction is therefore welcome.

 

Traditional media available in vehicles, such as radios and entertainment systems, can affect visual attention, and the current use of GPS navigation assistance and personal communication devices have been repeatedly shown to interfere with the primary driving vigilance and motor control task.  Such research has informed road authorities to restrict their use, particularly with regard to mobile phone use and texting for example.

 

The introduction of Intelligent Transport Systems has the potential to overload the driver if such systems are not tailored to driver workload according to location, traffic density and other ambient conditions.  A more accurate and layered approach to driver workload and attention level can provide a structure upon which information can be conveyed appropriately and distractions reduced or minimised.

Hume Freeway looking south towards Victoria, r...

Hume Freeway looking south towards Victoria, running parallel to Albury railway station. (Photo credit: Wikipedia)

 

There are many instances however where use of communication devices in vehicles may actually help in vigilance (for example, long distance driving) and the ability to operate a mobile office whilst driving has undoubted productivity benefits.  The problem is that the driving environment can potentially change in milliseconds and cause an overload of the driver’s available perceptual and attentional resources.

 

The aspect of appropriate speed limits in long distance driving could also be re-addressed.  There has been a spate of single driver transport accidents on the Hume Freeway recently which have had tragic (and potentially disastrous consequences). Apart from driver fatigue and scheduling issues, is the posted speed limit too low to maintain sufficient driver arousal levels?  Long boring drives at inappropriately low speeds could also encourage further distraction (such as use of mobile devices) perhaps even increasing the potential danger.  This may not be ideal given that the severity of an incident at 100kph is still as catastrophic as one at 110 or 120kph.  If speed kills, then surely it follows that the only safe speed is zero. There is a balance between the efficient movement of goods and the consequences of error.  Does this mean that interstate transport needs to travel at 40kph so that any incidents that occur are relatively minor? Would this result in more incidents because drivers would be bored out of their minds whilst blowing out transport schedules? There needs to be an open discussion by professionals in the field as to assessment of all of the risks rather than the current thinking that slowing traffic is the only solution as seems to be the case at present.  The posted speed relative to the road design and condition could be reducing driver arousal and performance level below the desired optimal range.

 

60KM/H Speed limit sign in Australia.

60KM/H Speed limit sign in Australia. (Photo credit: Wikipedia)

The Human Machine Interface (HMI) remains central to safe and effective vehicle operation as the information it provides will allow the driver to retain effective control of the vehicle and help influence or even determine their behaviour. Information flow to the driver must be intuitive, readily understood, timely, and be responsive to driver attentional and distraction state.  Unfortunately, there are many who have very little understanding of this requirement. For example, presentation of the “bells and whistles” mentioned in this proposed level crossing warning system  may actually distract a driver at the worst possible time and cause more problems than the technology is trying to solve. Human scientists understand the many facets that determine the best way of presenting information so that it is perceived, recognised and acted upon in an optimal manner.  If the proponent of this system had engaged human factors expertise in the first place or heeded their advice he may not have made such ill-considered comments. Perhaps he may get some guidance as to the importance of listening to human factors professionals when he presents his data at the upcoming ITS conference in Vienna. It would be good to have some critical assessment by any human scientists attending this conference of any actual (rather than derived or contrived) interactions that occurred during the trials which were conducted of this system.

 

The area of human interaction with technology is very complex and simplistic approaches (such as further unrestrained visual or auditory “bells and whistles blaring”) will rarely be the best solution.  All the more reason to design and test proposals from a human science standpoint, heed the results and incorporate them into any proposed system.  Which underscores the importance of the many respected facilities that incorporate human science input as a keystone of their research in ITS applications, vehicle design and driver behaviour.  Hopefully their research findings are weighted appropriately (ie. seen as valid and reliable) by the governing authorities as compared to those of the “bell and whistle” variety.

 

 

 

 

 

 

 

 

 

Advertisements

Lollies or Poison

October 16, 2012

Human factors covers many facets of human behaviour and interaction with the natural and constructed environment.  The issue of how to ensure that these environments remain safe for the younger and older members of our society is a case in point.Post image for Product Confusability: Tide Pods

Recently, a dishwashing detergent was packaged so that even adults could easily mistake them for food.  Young children have ingested these dangerous chemicals as the packaging is very colourful and resemble candy or lollies.  The harm done to these children and the increasing toll on the health system would surely outweigh the financial benefit to the manufacturer of this product, who obviously either didn’t think or was blissfully unaware of the consequences.  Perhaps the unwanted publicity of the dangers of this product, especially if there is an impact on their bottom line, may encourage them to design their products with more care in future.

All too often, human behaviour is not taken into account in the design of products.  No amount of urging customers to “be careful” will eliminate the danger posed by badly designed or labelled goods.  It is better business to design them properly in the first place.

When I was involved in training service and police dogs, there were five principles which used to guide us.  Firstly, Knowledge was required – if you didn’t know what you were doing, it made it difficult for the canine to know what was required.  Secondly, Repetition showed the required behaviour.  Thirdly, Patience in attaining the goal was essential.  Praise and Correction were the final principles, the former being more desirable and effective.  It seems that in the case of the design of the products described above, the first fundamental principle was lacking, as is commonly the case in many other applications where the knowledge and expertise of the human scientist is not sought or ignored.

This translates to the whole range of human applications.  Human scientists can provide critical knowledge but this fact is not often understood and can have great impact, both in terms of time and budget when ill informed decisions are made, and especially when the younger and older members of society are involved.

As has been previously posted, the initial BMW iDrive was a product which was installed in vehicles that the older demographic was more likely to acquire, which compounded the problems of poor initial design.  The older drivers did not have the digital savvy or knowledge that their offspring or grandchildren had and therefore the whole concept was flawed from the outset as it did not take into account the basic metrics of the human operator.  Of the five principles that I listed above, Patience is in short supply when you are battling traffic!

Which leads to the point made by the authors of the pieces – consideration of the special needs of the younger and older demographic is central to good design and outcomes going forward.


Simulation to help driver training?

October 10, 2012

Researchers are using driving simulators to help inform new drivers of the pitfalls of texting whilst driving.  Use of mobile communication devices is probably approaching the danger level of driving under the influence of drugs or alcohol or fatigue and is fast becoming one of the major problems on our roads.English: Fotograph of the SIMUVEG Driving Simu...

I have come across patents for devices which display SMS, Facebook and Twitter onto the windscreen of a vehicle.  I am amazed that the inventors have no perception of the dangers that they are advocating in their quest for a buck.

The main problem is that we are able to multi-task within the cognitive capability that we possess and in many driving situations we are able to ‘get away with it’.  We are not aware of how this affects our driving ability until an emergency situation occurs which approaches or exceeds our sensory, perceptual, cognitive or motor control limits.  This can happen in milliseconds.

English: bmw x5 idrive conroller Deutsch: bmw ...Unfortunately, when allied to the design limitations of the vehicles, this can be deadly.  For example, a major manufacturer has adopted the use of an LCD head down display for all of their vehicles.  As I have posted previously, this will require the driver to take their eyes off the road and use focal vision to control fine motor movement to touch the right portion of the screen.  Pretty poor design if you ask me – more likely a cost control measure without any idea of the consequences.  Obviously no human science input there, similar to BMW’s original iDrive. Allied to this is a curious standard that has been adopted that a function should not require a driver to take their attention away from the driving task for more than 3 seconds.  Wouldn’t a better design allow the driver to control things without having to take their eyes off the road? It is informative that BMW’s current system actually incorporates haptic feedback to achieve this result.

Perhaps we need some special driver training and further reinforcement on the dangers of texting whilst driving.  Or be informed by the latest research in human behaviour arousal and performance monitoring to help determine when the driver can perform tasks.  Given that vehicles now communicate with mobile devices using Bluetooth or similar protocols, any SMS, Facebook or Twitter feeds could be disabled whilst in the vehicle or tailored to operate when the vehicle is stationary, thereby reducing distraction which is acknowledged as the major cause of accidents. This is where ITS can assist if it is designed to integrate with the human who will remain in executive control of a vehicle for some time yet, despite the advances in automation.

All of which demonstrates that human scientists should be involved at the outset in the design and development of the HMI, and inform the powers that be on how the various technologies should be managed to reduce the dangers on our roads.  It would certainly be an improvement on the current situation.


The future world of neuroscience

October 3, 2012

English: Drawing of the human brain, from the ...

Just read a post on the increasing ability of neuroscientists to image and understand the brain.  The author, Kathleen Taylor makes a very interesting observation that perhaps in the future the research of the brain will surpass the physical sciences in importance.  She is probably biased given her neuroscience background but I feel that she has highlighted some fundamental questions with regard to how humans will interact with the world (or perhaps the universe?) and with each other in the future.

She makes the point that the physical sciences have largely been insulated from how the knowledge gained from research in this area is used, given that there is no human input into their experimentation.  The research is largely introspective or governed by mathematics or similarly prescriptive methods.  The potential consequences of the research is not addressed at any time (at least in a formal sense) as there is little input from others apart from peers and supervisors with a similar research background.

The difference between the physical and social sciences has been commented on in previous blog posts.  Physical scientists, although brilliant in their own field, tend to make assumptions as to how humans fit into their models and how their research can be applied.  Human behaviour is commonly included as a probability which then influences the remainder of the postulated model to provide results which do not necessarily reflect what actually happens in the real world.  However, either these discrepancies are ignored, or assumed to be just part of a distribution of human behaviour.  A system is then designed using such flawed thinking and typically, it is the poor old human operators who have to adapt and make up for such sloppy design when they have to make things work.

Alternatively, these operators are seen as the problem when the system is subsequently audited as the ‘brilliant’ system design is hardly ever tested and/or seen to be at fault.  At last there are glimmers of hope as safety management systems are identifying that these ‘brilliant’ systems are more often than not the cause of many failings, not just from the operator perspective.  So the ‘human error‘ which historically has almost always been attributed as the cause of an accident is sheeted home to where it belonArachnoidgs in the first place – the arrogant human who designed the system who was either unaware of or was permitted to ignore the fact that an inherent part of the design process is to understand how the human operator thinks and acts when interfacing with their system.

On the other hand, social scientists and human scientists in particular have a core theme that human behaviour is far more complex and determined by sensory and perceptual aspects initially, then modified by cognitive processes which are also subject to change.  These factors need to be addressed when modelling how a human operates with a machine or amongst themselves to make decisions etc.  As discussed in Kathleen’s article, the brain is such a complex organ and it is subject to a massive range of inputs that we are only now becoming aware of how it works, and how to manipulate it.  Perhaps in the new millennium, neuroscience may have similar advances as occurred in physics (relativity, quantum mechanics and understanding of atomic and sub-atomic structure for example) during the last.

Kathleen highlights that the ethics of operating on the neural and molecular scale within the human brain and the resultant impact it may have on the individual concerned will be a central theme going forward.  This is especially pertinent when entities such as commercial or government interests will be in a position to manipulate these factors and it is therefore something which needs to be addressed well prior to this particular genie escaping the bottle.

Which leads back to KathleEnglish: Computer tomography of human brain, f...en’s major point.  She contends that neuroscience may overtake the physical sciences as the whole consciousness experience will determine how the human species develops into the future.  The social/psychological/physiological sciences understand these aspects and, most importantly, understand the need for an ethical framework when addressing these matters.  So at least we will be better placed than the current situation, where the physical scientists, who have neither of these fundamentals, seem to determine how technology develops and is applied.  Perhaps we will then have a more level research field where social and human scientists are included at the very beginning and can (heaven forbid!) inform how technology is developed and applied to best advantage for the human user who will ultimately directly interact with it.


(Religion) Lost in Space

September 24, 2012
Luna 9 :*Denomination: 2 Forint

Luna 9 :*Denomination: 2 Forint (Photo credit: Wikipedia)

The concept that any future interstellar exploration be free of organised religion has recently been discussed.  Some have expressed the view that religion is toxic for human interaction and cooperation as is evidenced in many unsavoury incidents throughout history and is currently being witnessed with respect to the YouTube video denigrating the prophet Mohammed and subsequent reaction to it.

Humans have many attributes which may be positive or negative depending on the context.  Adaptability and imagination are very valuable human abilities, but these skills are not required nor perhaps desirable in a situation that requires heuristic thinking.  Conversely, applying a flawed or inappropriate heuristic can have disastrous consequences, or prevent a more appropriate paradigm from being developed.

A human will always be influenced in how they act and think by their prior experience. Even the application of the scientific method cannot eliminate these influences. The ability to assess complex data for example can be affected by education, training, aptitude and a host of other factors, which can vary according to the information being assessed.  It probably explains the range of specialities within a discipline, for example, in medicine, physics, chemistry, engineering and psychology.  With regard to future space exploration, the various TV program depictions such as Star Trek portray a range of specialists in the crew, making the assumption that all of these skills will be required to fully comprehend the magnitude and complexity of space.

Given that previous experience or belief systems are an inherent part of the human condition, it seems logical that a religious aspect will also then be represented within the crew of any intergalactic mission if it is to be truly representative of the human species.  And as bigoted or fundamentalist religious views are by definition extreme values within a normal population, it is highly unlikely that these would be represented to any significant statistical level.

With regard to positive and negative attributes, religion has been blamed for many ills, many of which can be justified.  However, religion should also be recognised for its many positive aspects, such as altruistic value systems, beneficence, the intrinsic value of individuals regardless of race, social standing or wealth, the existence and importance of a fundamental natural order and the concept of stewardship and responsible use of resources that then derive from it. Many advances in science were made possible by the religious systems of the time, such as astronomy and mathematics, although some of the authorities subsequently disputed the findings for whatever reason.  Is it so different to what is currently occurring where the evidence supporting climate change is disputed by certain sections within a secular society without any obvious underlying religious philosophical rationale?  It seems that belief systems generally, not just religious ones, are the root cause of disagreement.  This can be beneficial in the search for scientific truth and the progression of understanding – perhaps conflict is a positive human attribute as long as it is confined within an intellectual framework.So the discussion regarding the crew mix for future space exploration missions should expand to include all human experience and belief systems.  Perhaps religion can help unlock the mysteries of the human mind and the continuing quest of the species to explore and understand the universe.  All of which relates back to human science.


The rise of the drones

September 17, 2012
Kawasaki KAQ-1 Drone at Castle Air Museum

Kawasaki KAQ-1 Drone at Castle Air Museum (Photo credit: Wikipedia)

The ever increasing ability and availability of drone technology will have a major impact on defence and law-enforcement operations in the future.  Where capabilities of platforms used to be defined by the ability to deploy various assets within the capability of a class or type of vessel ( in naval operations for example, a carrier vs an offshore combatant vessel), the latter smaller platforms may soon be able to deploy an aerial capability which could previously only be provided by the larger and far more expensive vessels.

As noted in the article, this can have far-reaching consequences for navies where the majority of tasks are routine patrol and ‘constabulary’ operations of protecting sea lanes and territorial integrity.  With drone technology, a single smaller platform could perform tasks which currently require several more capable and expensive assets (for example, the patrol of a shipping route subject to piracy).

A telling point made in the article is the close involvement of the human in the loop.  Similar to other advances in automation, the command and control function remains within the human domain.  As stated “…there will inevitably be a human in the operational Observe, Orient, Decide and Act (OODA) loop – be they a remote operator, data handler oFull diagram originally drawn by John Boyd for...r decision maker within any of a number of mission sets.”

So the design of the HMI will determine how successful this shift in technology will be.  As has been seen in Afghanistan, the ability of the remote operator of a drone aircraft to gain and maintain situational awareness to perform their mission without unintended consequences will greatly depend on the amount, type and quality of information available to them and what range of tasks they need to perform.  Many combat aircraft have a crew of two due to the separate and demanding pilot and SA/engagement tasks, and military drone strike operations seem to reflect this crewing model. Perhaps this model is a historical legacy which may also change in the future as drones dispense with the constraint of having to fit the aircrew into the platform.

This may cause a shift in emphasis of the Human Factors and Ergonomics discipline.  A lot of effort was traditionally expended in the physical anthropometric ergonomics aspect of the human in the loop probably because it was so obvious. For example, range of movement, posture etc within a cockpit could be calculated and the 95thpercentile adopted as a standard which could then be used to determine interaction within the crew space available in the airframe. As we all know, engineers love standards, so perhaps this aspect was pursued to the detriment of equally or possibly more important aspects of the human/machine interface.

Computer Workstation Variables

Similar adoption of standards cannot be readily applied to much more esoteric aspect of neurological interaction with a system. For example, although it provides a very good framework to predict and test how an operator will interface with a HMI, Multiple Resource Theory doesn’t provide the level of certainty available from physical ergonomic models. Each aspect needs to be tested according to the many variables which could arise and the neural adaptability inherent in the human which makes them so important to the command and control function.  That’s why the non-physical human interaction field is so interesting to us practitioners (and perhaps perplexes many physical scientists who cannot seem to grasp the notion that humans cannot be treated as a simple probability or linear contributor in their decision models).

So while drone technology will enhance capability, it will only do so effectively if there is a requisite paradigm shift in how the interface is designed to incorporate the more difficult ‘neural ergonomic’ aspects described above.  Perhaps we can finally move away from the tyranny of standards which are sometimes adopted without further thought for the equally important sensory, perceptual and cognitive aspects which we pesky Human Factors types are constantly trying to highlight to our seemingly dullard peers in other fields, sometimes with, but unfortunately many times without success.


Vehicle Displays

September 10, 2012
Driver in a Mitsubishi Galant using a hand hel...

Driver in a Mitsubishi Galant using a hand held mobile phone violating New York State law. (Photo credit: Wikipedia)

I went to a workshop the other day and heard that a major vehicle manufacturer had adopted the use of touch screen control panels for all of their products.  The speaker had been employed to study the human factors associated with these. His talk was very disturbing – drivers needed more visual attention to use these things effectively as they needed fine motor control (and therefore visual attention) to press the correct area on the screen for their selection, especially if the vehicle was pitching due to the road surface or other conditions.  It made me wonder what bright spark in the company had decided that these displays were a good way to go.  When we are trying so hard to reduce mobile phone and texting use because of the clear and significant problems they pose to road safety, we have a vehicle manufacturer that decides to integrate something into the vehicle which will undo everything that road safety authorities have so far done in this area due to a lack of understanding of the issues involved.

I thought that we had learned from the initial BMW iDrive that technology for its own sake is not necessarily the way to go.  It speaks volumes that BMW now have a very much enhanced vehicle control system which includes haptic feedback so that there is nowhere near the impact on visual resources that the original design had.  And that’s good as the more visual attention is focused on the road, the safer all users will be (put it this way – if a driver is not looking at the external visual field there is no way that they can perceive and react to a potentially dangerous situation).

It made me call to mind a conversation with an engineer who was working on electric vehicles.  He said that they would incorporate noise into the car to emulate the typical sound of current cars.  He insisted that it was the only way to retain safety for pedestrians. It called to mind the situation where a man with a red flag used to signal the approach of ‘horseless carriages’ when they were first introduced in the late nineteenth century.  Why would you introduce noise into the environment when it may not be necessary – surely that is one of the advantages of electric vehicles?  Imagine a city with substantially less road noise (and perhaps more liveable?) as a result.

One disadvantage of course is that the auditory warning provided to pedestrians and other users would not be present, but I’m sure that we have the technology to overcome this aspect.  The almost ubiquitous use of entertainment devices by commuters effectively attenuates these auditory cues in any case as has been tragically illustrated by pedestrians being killed because they stepped out in front of approaching vehicles whilst listening to music from their iPods. However, DSRC network technology could easily provide warning information to pedestrians if it is set up correctly and integrated with the mobile communication networks.  Of course, there would need to be considerable human factors input so that any system is designed properly.

I suppose that all of these examples illustrate the importance of the latter aspect.  It would have been great if the vehicle manufacturer described at the beginning of this post had taken the step of actually testing their idea from a human perspective prior to making such a retrograde decision.  We now have vehicles which inherently create a similar problem to mobile phone use and texting problems that we are trying so hard to overcome – a safety time bomb in each of the vehicles produced by this company. Similar to faulty brakes or steering as it may have the same effect on road safety

One can only hope that the engineers, accountants and marketers who seem to rise to the top of these companies will realise the importance of fundamental human factors in their future products. Not just aspects such as usability testing, but the integral way that humans sense, perceive and process information.  Perhaps we can then apply a safety systems approach to road use and reap the benefits of eliminating the contributors to potential incidents (such as poor vehicle controls) before they occur.